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Abstract: We present our audio fingerprinting system that detects a transformed copy of an audio from a large 

collection of audios in a database. The audio fingerprints in this system encode the positions of salient regions of binary 

images derived from a spectrogram matrix. The similarity between two fingerprints is defined as the intersection of 

their elements (i.e. positions of the salient regions). The search algorithm labels each reference fingerprint in the 

database with the closest query frame and then counts the number of matching frames when the query is overlaid over 

the reference. The best match is based on this count. The salient regions fingerprints together with this nearest neighbor 

search give excellent copy detection results. However, for a large database, this search is time consuming. To reduce 

the search time, we accelerate this similarity search by using a graphics processing unit (GPU). To speed this search 

even further, we use a two-step search based on a clustering technique and a lookup table that reduces the number of 

comparisons between the query and the reference fingerprints. We also explore the trade off between the speed of 

search and the copy detection performance. The resulting system achieves excellent results on TRECVID 2009 and 

2010 datasets and outperforms several state-of-the-art audio copy detection systems in detection performance, 

localization accuracy and run time.  
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I. INTRODUCTION 
 

Audio fingerprint is extracted from spectrograph by a 

process called feature extraction. Track identification 

using audio fingerprinting is considered to be one of the 

fastest and accurate forms of music recognition. Audio 

fingerprints are compact content based signatures of audio 

recordings. These audio fingerprints capture highly 

specific characteristics of a short audio fragment. This 

feature makes it possible to accurately identify the 

fingerprint and distinguish itself from millions of songs. 

The key specialty of audio fingerprinting is to link 

unknown audio to corresponding metadata, irrespective of 

its audio format. An ideal audio fingerprinting system 

should be able to recognize an unknown audio fragment 

from the database regardless of the noise in the 

environment. The audio fingerprint system should be 

efficient. This is attained by making the fingerprints 

compact and implementing a complex and smarter search 

algorithm. It also requires the fingerprint extraction 

process to be powerful. Fingerprints and matching 

algorithms should result in the same content taken from 

the distorted audio recording. Fingerprints extract the 

characteristics of the audio recording in robust and concise 

format 
 

II. OBJECTIVE 
 

1. To propose a fast and robust audio fingerprinting 

system using parallel computing. 

2. To optimized algorithm searching time using gpu shared 

memory. 

 
 

3. To propose search algorithm based on a clustering 

technique that reduces the number of fingerprint 

comparisons significantly. 

 

III. LITERATURE SURVEY 

 

Hendrik Schreiber and Meinard Muller presented various 

improvements for the audio ID system originally proposed 

by Haitsma and Kalker. Our main observation was that the 

probability of finding a matching reference sub-print is 

elevated in the case that multiple consecutive query sub-

prints are identical. Which supports for mildly distorted 

audio files. 
 

J. Haitsma and T. Kalker presented a new approach to 

audio Fingerprinting. The Fingerprint extraction is based 

on extracting a 32 bit sub Fingerprint every 11.8 

milliseconds. The sub-Fingerprintare generated by looking 

at energy differences along the frequency and the time 

axes. A Fingerprint block, comprising 256 subsequent sub 

Fingerprints, is the basic unit that is used to identify a 

song. The Fingerprint database contains a two-phase 

search algorithm that is based on only performing full 

Fingerprint comparisons at candidate positions pre-

selected by a sub-Fingerprint search with reference to the 

parameters like Robustness, Reliability, Fingerprint size, 

Granularity, Search speed and scalability. 

A.Wang processes the Fingerprint from the unknown 

sample and matched with a large set of Fingerprint derived 

from the music database. The candidate matches are 
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subsequently evaluated for correctness of match. Some 

guiding principles for the attributes to use as Fingerprint 

are that they should be temporally localized, translation 

invariant, robust, and sufficiently entropic. The temporal 

locality guideline suggests that each Fingerprint hash is 

calculated using audio samples near a corresponding point 

in time, so that distant events do not affect the hash.  

 

IV. RELATED WOK 

 

A review of audio copy detection systems shows three 

main approaches to accelerate fingerprint search: binary 

search, hashing-based search and approximate search. The 

energy difference fingerprint, where a binary fingerprint 

encodes the energy differences along the frequency and 

the time axes, figures among the fastest CBCD systems. 

The binary representation of the fingerprints makes the 

search very fast. However, this fast search results in a 

modest performance compared to other methods. Regions 

around selected points from the maxima in the Mel-

filtered spectrum are encoded to generate binary 

fingerprints. Compared to, this approach improved 

significantly the detection accuracy while maintaining a 

fast search. Local regions of the spectrogram image are 

transformed into a set of 32 bit vectors, and a classical 

hash table is used to perform the search. In the Shazam 

system, several time-frequency points are chosen from the 

spectrogram. Compact signatures representing peak pairs 

are then generated to form fingerprint hashes that allow 

very fast search. Approximate searching techniques such 

as Locality Sensitive Hashing (LSH) are used in several 

works to accelerate the search. Wavelets with the largest 

magnitude are selected from spectrogram, and LSH is used 

to accelerate fingerprint similarity search. Although more 

robust than and this system is computationally very 

expensive. A comparative study  in terms of detection 

accuracy and computation time can be found.  The 

Weighted Audio Spectrum Flatness (WASF) is used as 

audio features, and LSH is adapted to compute the 

dissimilarity between two WASF features. LSH is used in 

many works to accelerate the search, but it is slower than 

the hashing-based search.  

Recently, Graphics Processing Units (GPUs) have been 

used to accelerate scientific computations. Using GPU to 

accelerate large-scale applications became easier with 

NVIDIA‟s CUDA platform. Several GPU 

implementations of widely used algorithms such as k-

nearest neighbor and LSH are available and can be used 

for audio copy detection. A GPU implementation of the 

Metric Permutation Table algorithm speeds up the search 

of digital images.  A GPU implementation of the nearest 

neighbor search between the reference and query 

fingerprint is then described in, where the copy detection 

algorithm has been modified to perform advertisement 

detection. Compared to its CPU implementation, this GPU 

implementation improves speed by a factor of 70. Similar 

GPU based nearest neighbor search is used in search 

through millions of fingerprints. However, these papers do 

not include a description of the GPU implementations. A 

parallel implementation is introduced and tested over a 

large database of more than 11,600 hours of audio. A GPU 

is used to parallelize two parts of the system leading to an 

overall speedup of a factor of 5. The authors also explored 

the use of three GPUs instead of only one allowing them 

to further improve performance by a factor of 3 on some 

parts of the system. 

In another work, the computation of the cross-correlation 

between two audio windows is accelerated using a GPU . 

The database used to test this algorithm is very small (1 

hour), and the GPU lead to a moderate improvement by a 

factor of 2 (compared to the CPU implementation). In 

Another technique that reduces search time and 

complexity is starting from the fact that search time is 

related to the size of the database, the authors partitioned 

the database of 100,000 songs into 10 sub-databases. The 

search then executes 10 independent processes on different 

machines. It divides the fingerprints database into several 

parts, and the search algorithm is executed in parallel 

based on the Message Passing Interface (MPI) standard. 

Clustering techniques have been used in several works to 

avoiding exhaustive search. In binary fingerprints of the 

reference videos are grouped into k different clusters, and 

only fingerprints that belong to the cluster closest to the 

query fingerprint are searched to find a match. The 

algorithm continues to examine other clusters if a match is 

not found. The problem in using this strategy is the 

possibility of visiting all the k clusters before a match is 

found resulting in an exhaustive search. 

 

V. PROPOSED SYSTEM 

 

 
Fig. 1  System overview. 

 

In a typical CBCD task, we search for a query audio in a 

database of reference audio files (containing copyrighted 

or original audio content) to see if the query is a copy of 

one of these reference audio files. For this task, we first 

extract robust audio fingerprints from these reference 

audio files. To extract these fingerprints, we first 

transform the audio signal into a spectrogram. We convert 

the resulting spectrogram into a set of 2-D binary images. 

Finally, we extract the top-d salient regions from each 

binary image.  
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Each Salient-Regions fingerprint is represented by a d-

dimensional vector, which contains the positions of the 

selected salient regions only, and stored into a reference 

fingerprint database. Once all reference fingerprints have 

been generated, a k-means like clustering algorithm 

groups the reference fingerprints into different clusters. 

These clusters are then used to accelerate the fingerprint 

search. Query fingerprints are extracted in the same way 

with an optional time-frequency scaling step (resampling) 

that reduces the speed difference between the query and 

the reference. Fingerprint retrieval is a two-step search: 

clustering-based retrieval followed by a GPU-based 

retrieval. This two step retrieval reduces the search time 

by several orders of magnitude. In this two-step search 

algorithm, a similarity search is performed using either the 

reference clusters (in case of clustering-based retrieval) or 

the original references (in case of GPU-based retrieval) to 

find the closest query fingerprint for each reference 

fingerprint. This similarity search associates with each 

reference fingerprint a query frame number corresponding 

to the best matching query fingerprint. The similarity 

search is followed by a matching step that associates a 

matching score between each reference file and the query. 

This matching step produces the final results and 

determines if the query is a copy of a reference audio file. 

 

A. Feature Extractions 

The feature extraction step is shown in Fig. 2. The 

spectrogram matrix in this figure represents the intensity 

of the signal at any given time and frequency. Finally, 

each binary image is divided into small square tiles of size 

11 × 11 resulting in 744 tiles2. The sum of all the 121 

elements within each tile is computed to obtain a 

quantized image. Then, a few salient tiles that have the 

highest sums are selected. The fingerprint encodes the 

positions of these salient tiles and eliminates their sums. 

The example in Fig. 2 shows a binary image divided into 

16 tiles (D = 16) and 6 salient tiles (d = 6) are selected.  

 

 
Fig. 2  Feature extraction with 16 tiles (D=16) and 6 

salient tiles (d = 6) from  quanized binary image derived 

from the spectrogram matrix. 

The positions of these 6 salient tiles represent the compact 

fingerprint. Adding more information to the spectrogram 

here does not increase the complexity of our system, since 

this spectrogram will be converted into compact 

signatures. These parameters are not critical to our system, 

and changing their values to a certain degree will not 

affect the system performance. Each spectrogram matrix is 

composed of 333 consecutive spectrograms derived from 

96 ms windows with a frame advance of 3 ms. Second, the 

large overlap (1-sec frame length with 24 ms frame 

advance) is chosen to overcome the lack of 

synchronization between the query and the reference. In 

fact, a large frame advance can prevent matching of query 

and reference frames when the start of the query is not 

synchronized with the start of the reference. 

 

B. Retrival 

Once all the reference and query fingerprints have been 

created, a search is performed to see if the query is a copy 

of an original audio in the reference database. Two 

principal steps for the retrieval process are:  

 

Similarity search: Each reference frame is labeled with 

the frame number of its closest query fingerprint. The 

query consists of a number of frames, say n. For each 

query frame we compute its fingerprint as shown in Fig. 2 

Similarly, each reference consists of a number of frames 

m, with a fingerprint extracted for each frame as shown in 

Fig. 2. For the fingerprint corresponding to each reference 

frame, we find the closest query fingerprint. The query 

frame number of this closest query fingerprint is then 

associated with that reference frame. In other words, in 

similarity search, we are associating a query frame number 

to each reference frame through this search. In this 

similarity search, the similarity measure is equal to the 

number of salient positions that coincide (i.e. intersection 

between reference and query fingerprint elements). Each 

reference frame is then labeled with the frame number of 

the closest query fingerprint. The total number of frame 

matches in the similarity search between a query 

(containing n frames) and a reference (containing m 

frames) is n × m (the total computing is proportional to n × 

m × d). 

 

Matching: After the closest query frame has been found 

for each reference frame, the total number of reference 

frames that match the query frame-synchronously is 

computed: We move the query over the reference, and we 

count the number of reference frames that match exactly 

the query frame number for each alignment. This count 

represents the confidence in the match between the query 

and the reference.  

 

VI.    ALGORITHM 

 

The similarity between two fingerprints is defined as the 

intersection between the elements of these two 

fingerprints. For example, if F1 = {1, 3, 4, 6, 8} and F2 

={1, 2, 4, 7, 9}, then similarity (F1, F2) = count {1, 4} = 
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2. Formally, for two fingerprints F1 and F2, the similarity 

between them is: 

Algorithm 1 Hashing-based similarity computation 

Input: Two vectors v1 and v2 of size d 

Output: The similarity between v1 and v2 

1: sim = 0 

2: create a vector hash of size D 

3: for i = 1 to D do 

4: hash[i] = 0 

5: end for 

6: for i = 1 to d do 

7: hash[v1[i]] = 1 

8: end for 

9: for i = 1 to d, do 

10: sim = sim + hash[v2[i]] 

11: end for 

12: return sim 

 

Algorithm 1a GPU kernel of hashing-based similarity 

search 

Input: reference fingerprints, query fingerprints 

Output: the closest query frame to each reference frame 

1: create a vector hash of size D in shared memory 

2: create a vector ref of size d in registers/local memory 

3: for each thread do 

4: load in ref one d-dimensional reference frame from 

global memory 

5: max = 0 

6: sim = 0 

7: pos = –1 

8: for each query frame n in global memory do 

9: for i = 1 to D do 

10: hash[i] = 0 

11: end for 

12: for i = 1 to d do 

13: hash[queryframe[n][i]] = 1 

14: end for 

15: synchronize threads 

16: for i = 1 to d do 

17: sim = sim + hash[ref [i]] 

18: end for 

19: if (sim > max) then 

20: max = sim 

21: pos = n 

22: end if 

23: end for 

24: end for 

25: results [threadId] = pos 

26: return results 

 

Algorithm 2 Similarity computation without hashing 

Input: Two vectors v1 and v2 of size d 

Output: The similarity between v1 and v2 

1: sim = 0 

2: for i = 1 to d do 

3: for j = 1 to d do 

4: if (v1(i) = = v2( j)) then 

5: sim = sim + 1 

6: end if 

7: end for 

8: end for 

9: return sim 

 

VII. ALGORITHM WORK 

 

The hashing-based algorithm (Algorithm 1) converts one 

d-dimensional fingerprint (vector v1) into a vector of D 

dimensions (d << D), and then looks for matching entries 

of the second d-dimensional fingerprint in this D-

dimensional vector (See Fig. 2 for definition of d and D). 

This algorithm has a linear time complexity. However, 

memory is a critical commodity on a GPU, and a D-

dimensional vector, for every thread, may drain GPU‟s 

resources (in our experiments D = 744 compared to a 

maximum d = 44). The first step in any GPU 

implementation is to transfer data from the host (CPU 

memory) to the device (GPU memories). Since the GPU 

has limited memory space, we process the reference set by 

portion. We transfer a reference portion to the GPU‟s 

global memory, and we perform the similarity search on 

this portion, then we process the next portion until all 

reference fingerprints have been processed. The number of 

query fingerprints is small and all the query fingerprints 

are transferred to the global memory. Once query and 

reference fingerprints are transferred into global memory, 

the GPU launches a kernel that performs the parallel 

portion of the application. In this kernel, hundreds of 

threads are executed in parallel, where each of them finds 

the frame number of the closest query fingerprint for one 

reference fingerprint. Algorithm 1a presents the proposed 

kernel, where the input are the reference and query 

fingerprints (loaded into global memory) and the output is 

a vector containing the frame number of the closest query 

fingerprint for each reference fingerprint. This similarity 

search uses the hashing-based algorithm. Each thread in 

this kernel starts by loading one d-dimensional reference 

fingerprint into registers or local memory (depending on 

dimension d: if there are not enough registers, then local 

memory is used to store one reference fingerprint for each 

thread). A D-dimensional vector (named hash) is created 

in shared memory to hash the elements of the query. It is 

also possible to switch the places for storing these 

variables by using the hash vector to hash the reference 

instead of the query. 

 

VIII. MATHEMATICAL MODEL 

 

Let system s can be defined as s= { A, As, B, Fd, C, R, 

Gm, O } 

A = Audio refrence file. 

A = { a1, a2, a3,............. an} 

As = Audio sectogram generation. 

As = { as1, as2, as3,............. asn} 

B= Set of binary images generated from audio. 

B = { b1, b2, b3,............. bn} 

Fd= Set of fingerprint for each audio file. 

Fd = { fd1, fd2, fd3,............. fdn} 

C= Set of refrence cluster of audio fingerprint. 
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C = { c1, c2, c3,............. cn} 

k= numbers of cluster. 

R= Refrence query/search query audio file. 

Gm= Set of GPU match result. 

Gm = { gm1, gm2, gm3,............. gmn} 

O= Set of output match audio files. 

O = { o1, o2, o3,............. on} 

 

IX. CONCLUSION 

 

In this work, we propose speed up of a state-of-the-art 

audio fingerprinting system appropriate for detecting 

audio copies subjected to complicated transformations. To 

generate audio fingerprints, this system converts the audio 

signal into 2-D binary images derived from the 

spectrogram. Each fingerprint encodes the positions of 

salient regions selected from this binary image. The 

similarity between two fingerprints is defined as the 

intersection between their elements.  

 

Because of the high dimensionality of the fingerprints and 

the large volume of data, searching over millions of 

fingerprints is computationally challenging. We 

investigate the use of a GPU to reduce the computing: we 

describe an efficient way of utilizing the GPU memories to 

search for similar fingerprints in parallel on a database of 

60 million fingerprints. Experimental results demonstrate 

that the GPU implementation can accelerate the search by 

up to 150 times compared to the CPU implementation.  

 

To reduce the run time even further, we propose a two step 

clustering based search. In the first step, we cluster the 

reference fingerprints into several thousand clusters, 

reducing the nearest-neighbor search time significantly. In 

the second step, we rescore the top N results obtained in 

the first step to produce more accurate copy detection.  

 

Our system also outperformed MASK, WASF feature, 

Coherency vocabulary method, the energy difference 

fingerprints, and the robust NN-based system. Future work 

will be mainly devoted to exploring new strategies to 

make the Salient-Regions audio fingerprint invariant to 

time-frequency scale modifications. A possible way to 

achieve this goal is to encode the positions of the selected 

salient regions relative to each other, instead of their 

positions within the window.  

 

A time-frequency modification applied to an audio signal 

leads to a proportional change in the time and frequency 

axes. This proposed strategy will ensure that the temporal 

and the spatial information will not be included in the 

fingerprint. As another part of our future work, we will 

investigate other promising clustering algorithms for 

robustness and for computing reduction. Finally, we intend 

to adapt the proposed audio fingerprint extraction 

technique to the video copy detection problem. In this 

case, salient regions will be selected from video images 

instead of audio spectrograms. 
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